Tuesday, April 22, 2014

Mercury & Venus the Two most Hostile Planets in the Solar System

A look at the two most hostile planets in the solar system -- Mercury and Venus; one gouged with craters, the other a greenhouse cauldron of toxic gases and acid rain; both scorched by their close proximity to the sun. Scientists theorize about what sort of life could evolve on these alien worlds.

Mercury is the smallest and closest to the Sun of the eight planets in the Solar System,[a] with an orbital period of about 88 Earth days. Seen from the Earth, it appears to move around its orbit in about 116 days, which is much faster than any other planet. This rapid motion may have led to it being named after the Roman deity Mercury, the fast-flying messenger to the gods. Because it has almost no atmosphere to retain heat, Mercury's surface experiences the greatest temperature variation of all the planets, ranging from 100 K (−173 °C; −280 °F) at night to 700 K (427 °C; 800 °F) during the day at some equatorial regions. The poles are constantly below 180 K (−93 °C; −136 °F). Mercury's axis has the smallest tilt of any of the Solar System's planets (about 1⁄30 of a degree), but it has the largest orbital eccentricity.[a] At aphelion, Mercury is about 1.5 times as far from the Sun as it is at perihelion. Mercury's surface is heavily cratered and similar in appearance to the Moon, indicating that it has been geologically inactive for billions of years.

Mercury does not experience seasons in the same way as most other planets, such as the Earth. It is locked so it rotates in a way that is unique in the Solar System. As seen relative to the fixed stars, it rotates exactly three times for every two revolutions[b] it makes around its orbit. As seen from the Sun, in a frame of reference that rotates with the orbital motion, it appears to rotate only once every two Mercurian years. An observer on Mercury would therefore see only one day every two years.

Because Mercury's orbit lies within Earth's orbit (as does Venus's), it can appear in Earth's sky in the morning or the evening, but not in the middle of the night. Also, like Venus and the Moon, it displays a complete range of phases as it moves around its orbit relative to the Earth. Although Mercury can appear as a very bright object when viewed from Earth, its proximity to the Sun makes it more difficult to see than Venus.

Venus is the second planet from the Sun, orbiting it every 224.7 Earth days. The planet is named after the Roman goddess of love and beauty. After the Moon, it is the brightest natural object in the night sky, reaching an apparent magnitude of −4.6, bright enough to cast shadows. Because Venus is an inferior planet from Earth, it never appears to venture far from the Sun: its elongation reaches a maximum of 47.8°. Venus reaches its maximum brightness shortly before sunrise or shortly after sunset, for which reason it has been referred to by ancient cultures as the Morning Star or Evening Star.

Venus is a terrestrial planet and is sometimes called Earth's "sister planet" because of their similar size, gravity, and bulk composition (Venus is both the closest planet to Earth and the planet closest in size to Earth). However, it has also been shown to be very different from Earth in other respects. It has the densest atmosphere of the four terrestrial planets, consisting of more than 96% carbon dioxide. The atmospheric pressure at the planet's surface is 92 times that of Earth's. With a mean surface temperature of 735 K (462 °C; 863 °F), Venus is by far the hottest planet in the Solar System. It has no carbon cycle to lock carbon back into rocks and surface features, nor does it seem to have any organic life to absorb it in biomass. Venus is shrouded by an opaque layer of highly reflective clouds of sulfuric acid, preventing its surface from being seen from space in visible light. Venus may have possessed oceans in the past, but these would have vaporized as the temperature rose due to a runaway greenhouse effect. The water has most probably photodissociated, and, because of the lack of a planetary magnetic field, the free hydrogen has been swept into interplanetary space by the solar wind. Venus's surface is a dry desertscape interspersed with slab-like rocks and periodically refreshed by volcanism.
Thumbnail

People will live on Mars and never come back Full Documentary

More than 100,000 people are eager to make themselves at home on another planet. They've applied for a one-way trip to Mars, hoping to be chosen to spend the rest of their lives on uncharted territory, according to an organization planning the manned missions.
Thumbnail

What is Space?

Space. It separates you from me, one galaxy from the next, and atoms from one another. It is everywhere in the universe. But to most of us, space is nothing, an empty void. Well, it turns out space is not what it seems. From the passenger seat of a New York cab driving near the speed of light, to a pool hall where billiard tables do fantastical things, Brian Greene reveals space as a dynamic fabric that can stretch, twist, warp, and ripple under the influence of gravity. Stranger still is a newly discovered ingredient of space that actually makes up 70 percent of the universe. Physicists call it dark energy, because while they know it's out there, driving space to expand ever more quickly, they have no idea what it is.

Probing space on the smallest scales only makes the mysteries multiply. Down there, things are going on that physicists today can barely fathom—forces powerful enough to generate whole universes. To top it off, some of the strangest places in space, black holes, have led scientists to propose that like the hologram on your credit card, space may just be a projection of a deeper two-dimensional reality taking place on a distant surface that surrounds us. Space, far from being empty, is filled with some of the deepest mysteries of our time.
Thumbnail

How Einstein Discovered E=MC2

How Einstein Discovered E=MC2

Thumbnail

The Real Science Behind Star Trek

The Real Science Behind Star Trek

Thumbnail

Is There an Edge to the Universe?

It is commonly theorized that the universe began with the Big Bang 13.7 billion years ago. But since we can only see as far as light has traveled in that time, we can't actually make out the edge of the universe. Could it be that the universe is infinite? Is there any way to find out what the shape of the universe really is? Can we find the edge, discover what might lie beyond it, and perhaps even discover a universe next to ours?

Narrated by Morgan Freeman

Note: This video is only for educational purposes and I am not claiming this video as my own in any way or making any money off it.
Thumbnail

Cosmic Journeys : Earth in 1000 Years

This edition of COSMIC JOURNEYS explores the still unfolding story of Earth's past and the light it sheds on the science of climate change today. While that story can tell us about the mechanisms that can shape our climate. it's still the unique conditions of our time that will determine sea levels, ice coverage, and temperatures.

Ice, in its varied forms, covers as much as 16% of Earth's surface, including 33% of land areas at the height of the northern winter. Glaciers, sea ice, permafrost, ice sheets and snow play an important role in Earth's climate. They reflect energy back to space, shape ocean currents, and spawn weather patterns.

But there are signs that Earth's great stores of ice are beginning to melt. To find out where Earth might be headed, scientists are drilling down into the ice, and scouring ancient sea beds, for evidence of past climate change. What are they learning about the fate of our planet... a thousand years into the future and even beyond?

30,000 years ago, Earth began a relentless descent into winter. Glaciers pushed into what were temperate zones. Ice spread beyond polar seas. New layers of ice accumulated on the vast frozen plateau of Greenland. At three kilometers thick, Greenland's ice sheet is a monumental formation built over successive ice ages and millions of years. It's so heavy that it has pushed much of the island down below sea level. And yet, today, scientists have begun to wonder how resilient this ice sheet really is.

Average global temperatures have risen about one degree Celsius since the industrial revolution. They could go up another degree by the end of this century. If Greenland's ice sheet were to melt, sea levels would rise by over seven meters. That would destroy or threaten the homes and livelihoods of up to a quarter of the world's population.

With so much at stake, scientists are monitoring Earth's frozen zones... with satellites, radar flights, and expeditions to drill deep into ice sheets. And they are reconstructing past climates, looking for clues to where Earth might now be headed... not just centuries, but thousands of years in the future.

Periods of melting and freezing, it turns out, are central events in our planet's history.
That's been born out by evidence ranging from geological traces of past sea levels... the distribution of fossils... chemical traces that correspond to ocean temperatures, and more.

Going back over two billion years, earth has experienced five major glacial or ice ages. The first, called the Huronian, has been linked to the rise of photosynthesis in primitive organisms. They began to take in carbon dioxide, an important greenhouse gas. That decreased the amount of solar energy trapped by the atmosphere, sending Earth into a deep freeze.

The second major ice age began 580 million years ago. It was so severe, it's often referred to as "snowball earth." The Andean-Saharan and the Karoo ice ages began 460 and 360 million years ago. Finally, there's the Quaternary... from 2.6 million years ago to the present. Periods of cooling and warming have been spurred by a range of interlocking factors: the movement of continents, patterns of ocean circulation, volcanic events, the evolution of plants and animals.

The world as we know it was beginning to take shape in the period from 90 to 50 million years ago. The continents were moving toward their present positions. The Americas separated from Europe and Africa. India headed toward a merger with Asia. The world was getting warmer. Temperatures spiked roughly 55 million years ago, going up about 5 degrees Celsius in just a few thousand years. CO2 levels rose to about 1000 parts per million compared to 280 in pre-industrial times, and 390 today.

But the stage was set for a major cool down. The configuration of landmasses had cut the Arctic off from the wider oceans. That allowed a layer of fresh water to settle over it, and a sea plant called Azolla to spread widely. In a year, it can soak up as much as 6 tons of CO2 per acre. Plowing into Asia, the Indian subcontinent caused the mighty Himalayan Mountains to rise up. In a process called weathering, rainfall interacting with exposed rock began to draw more CO2 from the atmosphere... washing it into the sea. Temperatures steadily dropped.

By around 33 million years ago, South America had separated from Antarctica. Currents swirling around the continent isolated it from warm waters to the north. An ice sheet formed. In time, with temperatures and CO2 levels continuing to fall, the door was open for a more subtle climate driver. It was first described by the 19th century Serbian scientist, Milutin Milankovic.

He saw that periodic variations in Earth's rotational motion altered the amount of solar radiation striking the poles. In combination, every 100,000 years or so, these variations have sent earth into a period of cool temperatures and spreading ice.
Thumbnail

Why Don't We Send Nuclear Waste To The Sun?


Could we just send all our nuclear waste to the sun? It would sure solve a lot of problems! Trace looks at whether or not this crazy plan has any possibility of happening.
Thumbnail

What Happens if the Planets Align?

Three planets of our solar system are preparing to do a rare, celestial dance that you'll actually be able to see from your house! Anthony tells us what's going on, and how to catch a glimpse.
Thumbnail

Related Posts Plugin for WordPress, Blogger...